
International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 266

Python's Indispensability in Artificial Intelligence and Machine

Learning: A Review

¹Fatoba, Toyosi Mercy; ²Oyeyemi, Dare Azeez; ³Oluyele, Sunday Anthony; &

⁴Adeniyi, Victor Oluwatobi.

¹Mechanical Engineering Department, The Federal Polytechnic, Ado-Ekiti;

²Computer Science Department, University of Ibadan;

³Computer Engineering Department, Federal University Oye Ekiti;

⁴Statistics Department, University of Lagos.

Corresponding Author’s Name & Email Address

Fatoba, Toyosi Mercy, fatobatoyosimercy@gmail.com.

DOI: 10.56201/ijemt.vol.11.no4.2025.pg266.303

ABSTRACT

This review paper explores the vital role played by the programming language Python in Artificial

Intelligence (AI) and Machine Learning (ML). It will discuss the origin of AI and ML, the first

programming language used for it, and its bottlenecks will be made known. There will also be an

exposition on the emergence of Python, its elements, and the comparison between Python and

LISP. The adoption and integration of Python into AI and ML will be considered, and the advanced

components of Python and their uses in AI and ML will also be discussed. The trajectory of AI and

ML with Python and the game-changing benefits of using Python in AI and ML will be assessed.

Suggestions will be given on what should be improved in Python to improve AI and ML.

Keywords: AI; ML; Python; Automation; Data analytics.

1.0. INTRODUCTION

1.1 The Inception of Artificial Intelligence (AI) and Machine Learning (ML).

Although artificial intelligence and machine learning appear to some as new concepts, they have

been in existence for over six (6) decades. Also, most people usually use the terms AI and ML

interchangeably, whereas they are different entities with integrative features. These technologies

have brought about tremendous changes in society and positively affected businesses and lives

(Toyosi et. al., 2024).

Artificial intelligence (AI) originated in the 1940s, inspired by Isaac Asimov's Three Laws of

Robotics and influenced by Alan Turing's pivotal contributions to code-breaking machines during

World War II. The term "AI" was formally introduced in 1956 during the Dartmouth Summer

Research Project on AI, which marked the beginning of dedicated AI research efforts aimed at

developing machines with the capacity to mimic and replicate human intelligence. (Haenlein &

Kaplan, 2019). Artificial Intelligence (AI) refers to the ability of computer systems to perform

tasks that typically necessitate human intelligence and input. AI systems are created to continually

acquire knowledge and advance their capabilities, rendering them an important asset across various

industries (Pranav & Sarma, 2023).

http://www.iiardjournals.org/
mailto:fatobatoyosimercy@gmail.com

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 267

Machine learning helps in the development of systems that use available data to learn and bring

about performance improvement on the tasks assigned. Machine learning is an integral concept of

artificial intelligence that designs models through its algorithm and utilizes training data to predict

or decide. ML can be used in diverse ways, which includes helping to simplify human tasks, so it

serves as a valuable tool in carrying out human endeavors. The name 'Machine learning' came into

existence in the year 1959, through the erudite scientist, named Arthur Samuel, who was a

trailblazer in the area of computer gaming and artificial intelligence and also a staff of IBM at that

time. Several machine-learning inventions came afterward that were trained repeatedly by humans.

(Pranav & Sarma, 2023).

1.2. The Relationship between Artificial Intelligence (AI) and Machine Learning (ML)

AI and ML are relative, even though they are not the same, and it would be easier to comprehend

their relationship when they are compared. AI encompasses a wider conceptual range, which gives

a system or machine the ability to think, detect, do, and make changes in a human-like manner.

ML serves as an aspect of AI that is applied to machinery, which enables them to utilize collected

data as a knowledgeable guide to learn independently. A typical way to show the relationship

between AI and ML is knowing that AI is a wide-reaching name that entails vast algorithmic

procedures, and ML is dependent on it to function optimally like every one of its aspects such as

robotics, expert systems, deep learning, and natural language processing, amongst others (Oracle,

2022).

Fig. 1: Machine Learning: A Subset of Artificial Intelligence (Ogunsanya & Taiwo, 2024)

1.3 The First Programming Language Used in Artificial Intelligence (AI) and Machine

Learning (ML)

List Processing (LISP) was developed in 1958 by John McCarthy as the first practical and

functional programming language for Artificial Intelligence. It is a program that relies on lambda's

idea and functional mathematical theories. LISP has been used to write a lot of useful AI

applications (Neumann, 2002).

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 268

LISP serves as a useful AI research programming language, and many ideas for computer science,

such as the read-eval-print loop, tree data structures, conditionals, higher-order functions, the self-

hosting compiler, dynamic typing, and automatic storage management, were built on it. The major

data structure of LISP is the 'Linked List,' and it's the source of its code (Adetiba et al., 2021).

1.4 The Major Bottleneck of LISP

The bottleneck of List Processing (LISP) is that it was built on mathematical notation, which uses

lambda calculus, a concept that is not generally available in institutions of higher learning for its

operations. This factor made it less comprehensible or usable to elementary programmers, unlike

some other Object-oriented languages such as Python, amongst others; it's also not easy to master

for experienced programmers, which implies no user-friendliness (Adetiba et al., 2021).

2.0 BODY

2.1 The Discovery of the Python Programming Language.

The multifunctional programming language called Python was formulated at the Centrum

Wiskunde and Informatica (CWI), Netherlands, by Guido van Rossum in 1980 and was officially

launched with the version named Python 0.9.0. in 1991 (Rossum, 2009; Venners, 2003).

Python came into existence as a better substitute to the already existing ABC programming

language, and it also bridged the gap of the ABC programming language with its capability to

handle exceptions and its ability to interact with the Amoeba's operating system (Van Rossum,

2000). Improvement was made to the, previously launched Python programs with the introduction

of the Python 2.0 version in the year 2000, which comprises more interesting attributes such as the

reference counting tool, list comprehension, garbage collection, Unicode support, and cycle-

detecting (Kuchling & Zadka, 2000).

Several versions of the Python program have been created after version 2.0. However, python

version 3.9 has remained the oldest version that is supported security-wise because version 3.8 got

to its end-of-life era. Python version 3.13 is the most recent Python program released; also, the

only active versions of the Python program are versions 3.13 and 3.12 (Status of Python Versions,

2024).

Python, being a top-notch and all-around useful programming language, is generally acceptable

for its readability through its usage of indentations in its algorithm (Kuhlman, 2011). It is a

dynamic programming language in that it gives room for multi-programming patterns, which

comprise functional, structured, and object-oriented programming. The comprehensiveness and

extensiveness of its standard library are the reason why it's also referred to as a ‘batteries included’

language (Hulatt & Frietas, 2024; PEP 206 – Python Advanced Library, 2000).

2.2 The Basic Elements of Python and their Purpose

Python programming language has diverse basic elements that form the foundation upon which

every advanced algorithm progression is built, and they are explicitly unfolded in this section.

2.2.1 Variable: is the name used to assign value or store data in Python programming. Only letters,

digits, and underscore can be used as a variable name, it's case sensitive, and Python programming

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 269

language keywords (such as else, if, for, print...) can't be used as variable names (Geeksforgeeks,

2025).

Table 1.

Variable.

S/N Variable Operators Value/Data Syntax/ Example

1. X = 5 X = 5

2. Her_Size = 21.5 Her_Size = 21.5

3. Cycle = Four Cycle = “Four”

2.2.2 Operators: special characters and symbols used to manipulate data and carry out diverse tasks

in Python are called Operators. There are various types of operators in Python, including arithmetic,

assignment, comparison, logical, bitwise, and membership operators (Singh, 2024).

● Arithmetic operators: are used to carry out operations according to the mathematical order,

such as addition, subtraction, multiplication, division, exponentiation, modulus, and floor

division (Geeksforgeeks, 2025).

Table 2.

Arithmetic Operators.

S/N Arithmetic

Operators

Symbol Syntax/

Example

1. Addition + X = 2

Y = 1

X + Y

2. Subtraction - X - Y

3. Division / X / Y

4. Multiplication * X * Y

5. Exponentiation ** X ** Y

6. Modulus % X % Y

7. Floor Division // X // Y

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 270

● Assignment Operators: are used for attaching or assigning values to variables, there are

diverse types of assignment operators as listed below.

Table 3.

Assignment Operators (Singh, 2024).

S/N Assignment

Operators

Symbol Syntax/ Example Definition

1. Simple Assignment

Operators

= X = 2 For assigning a value to the

variable.

2. Addition

Assignment

Operators

+= X += 2 For adding a value to the

variable and assigning the

result to the variable.

3. Subtraction

Assignment

Operators

-= X -= 2 For subtracting a value

from the variable and

assigning the result to the

variable.

4. Division Assignment

Operators

/= X /= 2 For dividing the variable by

a value and assigning the

result to the variable.

5. Multiplication

Assignment

Operators

*= X *= 2 For multiplying a variable

by a value and assigning

the result to the variable.

6. Exponentiation

Assignment

Operators

**= X **= 2 For raising the variable to

the power of a value and

assigning the result to the

variable.

7. Floor Division

Assignment

Operators

Python X //= 2 For dividing the variable by

a value and returning the

largest integer either less or

equal to the result.

8. Modulus

Assignment

Operators

%= X %= 2 For finding the remainder

when the variable is

divided by a value and

assigning the result to the

variable.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 271

● Comparison Operators: are used to compare values and they always result in either True

or False based on the conditions. The types of comparison operators are listed in the figure

below.

Table 4.

Comparison Operators (Geeksforgeeks, 2025).

S/N Comparison

Operators

Symbol Syntax/

Example

Definition

1. Greater Than > X = 2

Y = 1

X > Y

True: if the left operand is greater than the right.

2. Less Than < X < Y True: if the left operand is lesser than the right.

3. Equal To == X == Y True: if both operands are equal.

4. Not Equal To != X!= Y True: if both operands are not equal.

5. Greater Than

or Equal To

>= X >= Y True: if the left operand is greater than or equal

to the right.

6. Less Than or

Equal To

<= X <= Y True: if the left operand is lesser than or equal to

the right.

● Logical Operators: are used to merge conditional statements in terms of True or False.

The logical operators are AND, OR, and NOT (Geeksforgeeks, 2025).

Table 5.

Logical Operators (Geeksforgeeks, 2025).

S/N Logical Operators Syntax Definition

1. AND X and Y If both operands are True, the output is True

2. OR X or Y If one of the operands is True, the output is True.

3. NOT not Y If the operand is False, the output is True.

● Bitwise Operators: are used to perform operations with integers bit by bit and they operate

on binary numbers (Geeksforgeeks, 2025).

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 272

Table 6.

Bitwise Operators (Singh, 2024).

S/N Bitwise

Operators

Symbol Syntax/

Example

Description

1. Bitwise AND & X & Y It carries out a bitwise AND

operation on the binary

representations of two integers.

2. Bitwise OR | X | Y It carries out a bitwise OR operation

on the binary representation of two

integers.

3. Bitwise NOT ~ ~X It carries out a bitwise NOT operation

on the binary representation of an

integer.

4. Bitwise XOR ^ X ^ Y It performs a bitwise XOR operation

on the binary representation of two

integers.

5. Bitwise Right

Shift

>> X>> It moves the bits of the left operand to

the right by the number of positions

indicated by the right operand.

6. Bitwise Left Shift << X<< It shifts the bits of the left operand to

the left by the exact number of

positions specified by the right

operand, ensuring precise data

manipulation.

● Membership Operators: are used to assess whether a specific value or variable is present

within a given sequence.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 273

Table 7.

Membership Operators (Geeksforgeeks, 2025).

S/N Membership

Operators

Syntax/ Example Description

1. IN Ages = [92, 93, 94, 95]

print (93 in Ages)

Result: True

It is used to check if a character, substring, or

element exists in a sequence. It results in

‘True’ if the specified element is found;

otherwise, it is ‘False.’

2. NOT IN Ages = [92, 93, 94, 95]

print (93 not in Ages)

Result: False

It is used to check if a character, substring, or

element doesn't exist in a sequence. It results

in ‘True’ when the variable is absent from the

specified sequence, while it results in ‘False,’

if the variable is found.

2.2.3 Data Types: In programming, data types are ways data are classified and they define the

kind of value they represent and the operations that can be performed upon them (NTU Library,

2024).

● Numerical Data Types: Python provides some built-in data types to handle different kinds

of numerical values which are important for mathematical computations as needed in

AI/ML.

Table 8.

Numerical Data Types

S/N Data

Types

Syntax/ Example Description

1. Integers

(int)

x = 5 This is used to represent whole numbers, positive or

negative, without fractions or decimals (NTU Library,

2024)

2. Floating-

Point

Numbers(

float)

y = 3.14 This is used for real numbers with decimal points and

used for precision calculations (Ali, 2015).

3. Complex

Numbers

(complex)

z = 2 + 3j This is used for numbers with real and imaginary parts -

they are useful in scientific computing and engineering

fields (Ali, 2015).

● Sequence Data Types: These are used to handle ordered collections of items. Examples

are below:

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 274

Table 9.

Sequence Data Types

S/N Data Types Syntax/

Example

Description

1. Strings (str) s = "Hello" They are used for sequences of characters; they are

immutable, i.e., modifying them will create a new

string object (Pozo Ramos, 2025).

2. List (list) l = [1, "a", 3.5] These are ordered, mutable collections that can hold

heterogeneous elements (Abhirami, 2024).

3. Tuples

(tuple)

t = (1, "b", 2.5) These are ordered, immutable collections; they

support heterogeneous elements (Severance, 2016).

4. Dictionaries

(dict)

d = {"key":

"value"}

They are used for key-value pairs, mutable, and

maintain insertion order from Python 3.7+ (Patnaik,

2023).

5. Sets (set) s = {1, 2, 3} They are an unordered collection of unique,

immutable-type elements; mutable as a whole (NTU

Library, 2024).

● Boolean Data Type: This is used to represent logical values for truth conditions in

programming

Table 10.

Boolean Data Type

Data Type Syntax/ Example Description

Booleans

(bool)

flag = True They typically are True or False and are used in

controlling program flow with conditionals and logical

operators (Ali, 2015).

2.2.4 Functions: They allow programmers to put an entire collection of statements into a block

and this block can now be executed as many times as we want by calling its name (Simplilearn,

2025). It is implemented using the def keyword then the function name, a pair of parenthesis, and

a colon (e.g., def sum(x, y):). The block of code that would contain the body of the function will

be indented below the def line (Parlante, 2020).

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 275

Table 11.

Function Types

S/N Function

Types

Syntax/

Example

Description

1. User-defined

functions

def my_func(): These are written by programmers using the ‘def’

keyword to perform specific tasks according to a

project’s requirements (Singh, 2024).

2. Lambda

functions

lambda x: x + 1 These are small, anonymous functions defined with

the ‘lambda’ keyword, they are limited to a single

expression and are often used with map(), filter(),

and sorted() (Rao, 2024; Singh, 2024).

3. Recursive

functions

def recur():

return recur()

These are functions that call themselves to solve

problems using repeated subproblem breakdown,

they always include a base case to terminate

recursion (Rao, 2024; Singh, 2024).

2.2.5 Control Flow Statements: are fundamental constructs in programming that dictate the order

in which instructions are executed. They enable dynamic decision-making and repetitive task

automation, enhancing the flexibility and efficiency of code (StudySmarter, 2024). The two main

types of control flow discussed in this section are the conditionals and loops.

● Conditional Statements: allow programs to execute different code blocks based on

specified conditions defined by the programmer (Chen et al., 2025). Key constructs are

explained in the table below.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 276

Table 12

Conditional Statements

S/N Conditiona

l Statement

Types

Description Syntax/ Example

1. If

Statements

This is the

simplest form

of branching,

where code

executes only

if a certain

condition is

true (Chen et

al., 2025).

temperature = float(input("Enter the temperature in °C: "))

1f temperature < 15:

 print(“it’s cold!”)

#The output of this would depend on the value of

temperature inputted by the user if less than 15.

2. If-else and

elif:

This extends

the decision-

making to

multiple

outcomes

(Sebesta,

2018).

score = float(input("Enter your score"))

if score >=90:

 print(“Your grade is A")

if score >=65:

 print("Your grade is B")

else:

 print("Your grade is C")

3. Ternary

Operators:

This is a

concise one-

line

conditional

statement

(Chen et al.,

2025). It is like

a short "if-else"

statement

squeezed into

one line.

if weather=="sunny": print ("Go to the beach") else:

print("Stay home")

● Loop Statements: Repeat a block of code until a condition is met, reducing redundancy

(StudySmarter, 2024). Loops are indispensable for tasks like data processing (e.g., iterating

through datasets), simulations, and automating repetitive operations (e.g., batch file

processing). Common types of loops are explained in Table 13.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 277

Table 13

Types of Loop Statements

S/N Types of Loop Statements Description Syntax/ Example

1. For Loops It iterates over

sequences (e.g., lists,

strings) (Gaddis,

2024).

 for i in range(5):

 print(i)

Outputs: 1 2 3 4 5

2. While Loops This executes as long

as a condition remains

true.

printing the word “Looping”

until count’s value is equals or

greater than 3

count= 0

while count < 3:

 print (“Looping”)

 count +=1

2.2.6 Modules: In Python, a module is a file containing reusable code, functions, classes, and

variables that can be imported into other programs. Python comes with a standard library of built-

in modules, but developers can also create custom modules or install third-party ones to extend

functionality (Lutz, 2013).

● Types of Modules

Python modules can be categorized into three main types as shown in Table 14 below.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 278

Table 14

Types of Modules

S/N Types of Modules Description Syntax/ Example

1. Built-in Modules These modules are pre-installed

with Python and provide

essential functionality (R.

Sharma, 2025)

Examples

are: math (mathematical

functions), random (random

number generation), and sys

(system-specific parameters and

functions).

2. User-Defined

Modules

A user-defined module is a

Python file created by a

programmer containing

functions, classes, or variables

(N. Kumar, 2018)

Here is an example of a simple

module named my_module.py,

which will later be imported and

used in another script

#my_module.py

def greet(name):

 return f”Hello, {name}!”

#using the my_module.py in

another script:

import my_module

print(my_module.greet(“Alice”

))

3. Third-Party

Modules

These are external modules

developed by the Python

community and can be installed

using ‘pip’ in the code editor’s

terminal (Python's package

manager) (Luna, 2019).

Examples include: NumPy

(numerical computing), pandas

(data manipulation), matplotlib

(data visualization), and

requests (handling HTTP

requests)

● Importing Modules in Python

Modules can be imported in different ways depending on the requirements. Table 15 shows different

ways of importing modules in Python.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 279

Table 15

Ways of importing modules in Python

S/N Ways of

Importing Module

Description Syntax/ Example

1. Basic Import This involves importing the Python

built-in modules, such as the ‘math’

module

import math

print (math.sqrt(100))

Output: 10.0

2. Import with an

Alias

Occurs mostly when importing third-

party libraries such as numpy

import numpy as np

print(np.array([1, 2, 3]))

3. Importing Specific

Functions

When importing a specific function

from a library using the from ... import

... syntax.

from math import sqrt

print(sqrt(36))

Output: 6.0

2.3. Python vs List Processing

Table 16.

Python vs LISP

S/N Python List Processing (LISP)

1 Python is renowned for its syntax, which

is easy to understand, legible, and closely

resembles natural language.

It separates code blocks with indentation,

which makes the code clear and easy to

follow (Protasiewicz, 2024).

Sample code:

def add(a, b):

 return a + b

LISP is mostly made up of lists and has a

more uniform and abstract syntax.

LISP codes and data are written as s-

expressions (symbolic expressions) with a

prefix notation, which may not be clear and

easy for beginners. (McJones, 2017)

Sample code:

(defun add (a b)

 (+ a b))

2 Python supports object-oriented,

functional, and procedural programming,

making it suitable for various application

use cases (Blackwell, 2024).

LISP supports procedural and object-oriented

paradigms (for example, Common Lisp

Object System -CLOS), making it efficient in

meta-programming and symbolic

computation. (McJones, 2017).

3 It is widely used in web development, LISP is widely used in symbolic applications,

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 280

S/N Python List Processing (LISP)

scripting, machine learning, data science,

and automation (N. Sharma, 2023).

Python is versatile for numerous

applications because of its robust libraries

such as NumPy, Pandas, and TensorFlow.

particularly in artificial intelligence research

and natural language processing (Stephen

M., 2022).

It is also utilized in fields that need a great

deal of customization, such as embedded

systems, and in educational settings to teach

programming fundamentals.

4 Generally faster for numerical

computations.

(GeeksforGeeks, 2024) Claimed Python is

an interpreted language, which generally

makes it slower than compiled languages.

However, it is often fast enough for many

applications, and performance can be

improved with extensions like Cython or

by using libraries written in C.

Can be slower for numerical computations

but often faster for symbolic manipulation

LISP implementations (like Common Lisp)

can be compiled into machine code, leading

to potentially higher performance than

interpreted languages (Ihaka & Lang, 2008).

LISP’s macros also allow developers to optimize

code in ways that are difficult in other languages.

5 Its simplicity and libraries contribute to

rapid development (N. Sharma, 2023).

It’s commonly used for prototyping and

agile development due to its ease of use.

LISP enables rapid prototyping and

incremental development. However, its

steeper learning curve may slow down initial

development for people not familiar with the

language (Turner, 2012).

6 Python's simple syntax and readability

make it a great choice for programming

beginners (Khaled, 2023).

It is more challenging to learn, due to its

distinctive syntax and abstract concepts like

macros and functional programming

(Stephen M., 2022).

7 Python supports metaprogramming to

some extent through features like

decorators, metaclasses, and introspection.

However, it’s more limited compared to

LISP (Gupta, 2023).

LISP excels at metaprogramming, allowing

programmers to manipulate code as data

(homoiconicity) (Kumar, 2024).

Its macro system is particularly powerful,

enabling the creation of domain-specific

languages (DSLs) and custom syntactic

constructs.

8 Uses automatic memory management with

reference counting and garbage collection

(Tas, 2024).

Uses garbage collection to manage memory,

but the exact mechanism may vary across

different LISP dialects. (Shipley & Jodis,

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 281

S/N Python List Processing (LISP)

Developers generally don’t need to

manually manage memory.

2003).

9 Supported by a wide range of IDEs and

tools like PyCharm, VS Code, and Jupyter

Notebooks (A. Gupta, 2020).

LISP often requires more specialized tools,

with Emacs and SLIME being a common

combination. However, modern IDE support

for LISP is not as extensive as for Python.

(Borretti & Nathan, 2024).

10 Large and active community, extensive

libraries (NumPy, Pandas, TensorFlow,

Scikit-learn) (N. Sharma, 2023).

Smaller community, but still has useful

libraries (CL-NUMERIC, ACL2) (Stephen

M., 2022).

2.4 Algorithm Comparison between Python and LISP

This section compares Python and LISP in implementing common algorithms: factorial

calculation, Fibonacci sequence, summing a list, and reversing a list.

2.4.1. Factorial calculation: Both Python and Lisp use recursion for factorial. Python checks if n

== 0 and returns 1; otherwise, it multiplies n by factorial(n-1). Lisp does the same with if and

returns (* n (factorial (- n 1))). They are identical, but LISP uses verbose syntax and confusing

parenthesis. This comparison is shown in Table 17. and Figure 2.

Table 17.

Algorithm comparison for factorial calculation.

Python LISP

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(5))

(defun factorial (n)

 (if (= n 0)

 1

 (* n (factorial (- n 1)))))

;; Example usage

(print (factorial 5)) ;; Output: 120

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 282

Fig. 2: Python vs LISP implementation for factorial calculation

2.4.2. Fibonacci Sequence: Python handles this with recursion, checking if n <= 1 and returning

n, otherwise recursively calling Fibonacci (n-1) + Fibonacci (n-2). Lisp does the same but in a

functional style, using defun and prefix notation, returning n for n <= 1 or recursively calling

Fibonacci (- n 1) and Fibonacci (- n 2). The comparison is displayed in Table 18. and Figure 3.

Table 18.

Algorithm comparison for Fibonacci sequence.

Python LISP

def fibonacci(n):

 if n <= 1:

 return n

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(6))

Output: 8

(defun fibonacci (n)

 (if (<= n 1)

 n

 (+ (fibonacci (- n 1)) (fibonacci (- n 2)))))

;; Example usage

(print (fibonacci 6))

;; Output: 8

Fig. 3: Python vs LISP implementation for Fibonacci sequence

2.4.3. A sum of a List: In Python, the sum of the list can be calculated in one line using the built-

in sum() function. On the other hand, Lisp handles this operation through recursion, checking if

the list is empty and then using the first element (head) and the rest of the list (tail) to sum the

elements recursively. This comparison can be seen in Table 19. and Figure 4.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 283

Table 19.

Algorithm comparison for the sum of a list.

Python LISP

def sum_list(lst):

 return sum(lst)

print(sum_list([1, 2, 3, 4, 5]))

Output: 15

(defun sum_list (lst)

 (if (null lst)

 0

 (+ (car lst) (sum_list (cdr lst)))))

;; Example usage

(print (sum_list '(1 2 3 4 5))) ;; Output: 15

Fig. 4: Python vs LISP implementation for the sum of a list

2.4.4. Reverse a List: Python uses slicing ([::-1]) to reverse the list in one line, while LISP uses

recursion, where it appends the first element (car) to the reversed remainder of the list (cdr). Python

achieves this with a simple built-in feature, while Lisp manually constructs the reversed list

recursively. This comparison is shown in Table 20. and Figure 5.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 284

Table 20.

Algorithm comparison for reversing a list.

Python LISP

def reverse_list(lst):

 return lst[::-1]

print(reverse_list([1, 2, 3, 4, 5]))

Output: [5, 4, 3, 2, 1]

(defun reverse_list (lst)

 (if (null lst)

 nil

 (append (reverse_list (cdr lst)) (list (car

lst)))))

;; Example usage

(print (reverse_list '(1 2 3 4 5)))

;; Output: (5 4 3 2 1)

Fig. 5: Python vs LISP implementation for reversing a list.

2.5 The Adoption and Integration of Python with AI and ML.

Python became the most preferred programming language in Artificial Intelligence and Machine

Learning due to its simplicity, versatility, and extensive ecosystem of libraries and frameworks.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 285

Fig. 6: Survey on the most preferred programming language by 14,000 developers (Quintagroup,

2019).

Its adoption in AI and ML has revolutionized the field, enabling rapid development, prototyping,

and deployment of intelligent systems (McRorey, 2025). This section is focused on the factors that

drove Python's adoption in AI and ML and how its integration process.

2.5.1 Factors that Drove Python's Adoption in AI system

The adoption of Python into AI/ML was driven by factors like syntax, which is intuitive and

closely related to natural language; it made Python more accessible to both beginners and

experienced developers. Its code's simplicity and readability brought about the reduced time

required to draft and debug code, which has helped a lot in the development of AI and ML projects

(Prabu et al, 2024). Also, the availability of extensive library frameworks, such as TensorFlow,

PyTorch, Scikit-learn, Keras, and Pandas, among others, in Python programming has significantly

contributed to its preference for AI and ML over other programming languages. The

aforementioned factors have been useful in streamlining complex tasks in terms of data

preprocessing, model training, and evaluation; they have also enabled AI and ML developers to

solve problems quickly by leveraging the existing information that is available to them

(McKinney, 2017).

Notably, AI and ML models built using Python can operate across multiple operating systems with

minimal adjustments, making it highly adaptable for deployment in diverse environments. Python

also integrates effortlessly with other programming languages and technologies, such as C/C++

for enhancing performance and JavaScript for web-based applications. This interoperability

significantly boosts its effectiveness in AI and ML workflows, ensuring flexibility and efficiency

(Ghimire, 2020).

Beyond its technical strengths, Python benefits from a large and active community that drives its

ongoing development. This community contributes not only to extensive documentation but also

to tutorials, forums, and resources that help developers learn and resolve issues. Such support

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 286

fosters innovation and collaboration, further solidifying Python’s position as a leading tool in AI

and ML (Blackwell, 2024).

2.5.2 From Data to Deployment

Python offers an integrated ecosystem that seamlessly connects every stage of development.

Libraries like Pandas and NumPy simplify data preprocessing, enabling efficient data

manipulation, cleaning, and analysis-essential steps for preparing datasets. These tools work hand-

in-hand with frameworks like TensorFlow and PyTorch, which provide high-level APIs for

building and training models, from traditional ML algorithms to advanced deep learning

architectures. This smooth transition from data preparation to model development highlights

Python's ability to unify diverse tasks into a single, cohesive workflow (Prabu et al, 2024).

Beyond Python's integration in the development of AI and ML, its integration extends to

visualization and deployment with the use of Libraries like Matplotlib and Seaborn which allows

developers to create insightful visualizations, making it easier to interpret results and communicate

findings. For deployment, tools like Flask and Django enable models to be integrated into web

services, while libraries like Dask and Ray ensure scalability for handling large datasets and

complex computations. This end-to-end integration from data preprocessing to deployment, makes

Python an indispensable tool for AI and ML workflows, ensuring efficiency and coherence across

all stages (Ghimire, 2020).

3.O THE ADVANCED COMPONENTS OF PYTHON AND THEIR USES IN AI AND ML.

Python has several game-changing features that make it an essential tool for AI and ML. These

features include:

● Context Managers: These provide a structured and reliable way to manage resources and

ensures that setup and teardown operations are executed automatically even when exceptions come

up. These are implemented using the with statement which calls the __enter__ method when

entering the block and the __exit__ method when exiting. In AI/ML, it is used to manage file

resources like datasets, model weights and training logs (Khare, 2024).

Fig. 7: Code snippet to illustrate context managers in Python

● Metaclasses: These are used for controlling the creation and behaviour of classes and are

often referred to as “Classes of classes”. They are used to define how class objects are

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 287

instantiated which allows dynamic modification of class attributes and methods. Some of

these classes can be created by inheriting from default metaclass, type, and overriding

methods like __new__ and __init__ to customize the class creation. In AI/ML, they are

used for automatic registration of models and components which allows subclasses created

to be automatically registered in a central repository (Rafalski, 2024).

Fig. 8: Code snippet to illustrate metaclasses in python

● Abstract Base Classes (ABCs): ABCs are provided by the abc module in Python and they

serve as blueprints for creating interfaces and ensuring that concrete subclasses use specific

sets of methods. They are defined by inheriting from abc.ABC and using the

@abstractmethod decorator to declare methods that must be implemented by any non-

abstract subclass. In defining interfaces between different components of a system like

models, data loaders, etc. ABCs are useful in such AI/ML applications (Jain, 2024).

Fig. 9: Code snippet to illustrate abstract base classes in python

● Multiple Inheritance and MRO (Method Resolution Order): Python has a feature

which allows a class to inherit from more than one parent class - this is called Multiple

Inheritance. Thica can be useful for creating specialized model classes that inherit

functionalities from a base class and also uses specific features from mixin classes. When

a class inherits from multiple parents, Method Resolution Order (MRO) is a mechanism

that determines the order in which methods and attributes are searched for in the class

hierarchy. MRO follows a depth-first, left-to-right approach. Developers can inspect the

MRO of a class by using __mro__ attribute or the mro() method (Rohith, 2023).

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 288

Fig. 10: Code snippet to illustrateMultiple Inheritance and MRO in python

● Coroutines and Async Programming: Python has a library called asyncio which is

responsible for handling coroutines and asynchronous programming and it uses the

async/await syntax. This functionality provides tls for mproviing the efficiency of I/O

bound operations in AI/ML. Often times, when creating AI/ML pipelines, data loading and

preprocessing, these operations involve significant I/O. Asynchronous programming

allows the program to perform other tasks while waiting for I/O operations to complete and

this is great for improving performance (Gangopadhyay, 2025).

Fig. 11: Code snippet to illustrate Coroutines and Async Programming in python

● Dynamic Code Execution (exec and eval): Python has functions called exec() and eval()

which gives the ability to execute Python code dynamically from strings. In AI/ML, this is

useful for rapid prototyping because it allows researchers to quickly test new ideas oor run

experiments with dynamical code snippets. Table 21 below shows a comparison of exec()

and eval() (Jenifar, 2023).

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 289

Table 21.

Dynamic Code Execution (exec and eval)

Feature exec() eval()

Purpose Execute a block of statements Evaluate a single expressiion

Return

value

Returns None Returns the result of the expression

Code type For blocks of code including

statements

For expressions

In AI/ML Dynamic model construction based on

configurations

Dynamical evaluation of expressions (e.g

loss functions)

Fig. 12: Code snippet to illustrate exec() and eval() in python

● Concurrency with Threading and Multiprocessing: These modules (threading and

multiprocessing) provide mechanisms for achieving concurrency and parallelism in

AI/ML. Threading is when concurrent execution of tasks are allowed within a single

process while multiprocessing is when true parallelism is enabled by using multiple CPU

cores and bypassing the Global Interpreter Lock (GIL). These functions make it easy to

handle CPU-intensive tasks like model training and many libraries like scikit-learn provide

support for multiprocessing (Premanand, 2024).

Fig. 13: Code snippet to illustrate threading and multiprocessing in python

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 290

● Decorators: These are special functions that can modify the characteristics of other

functions (Luciano, 2022). Figure 14. shows an example of a decorator function.

Fig. 14. An example of a decorator function

● Generators: These are tools that simplify code and enhance performance, particularly in

handling complex data problems (Sunil, 2019). Generators yield items one at a time for

memory conservation. As seen in Figure 15, we use the ‘yield’ keyword to achieve this

task.

Fig. 15: Generator using ‘yield’

4.0 DISCUSSION

4.1 The Trajectory of AI and ML with the Python Programming Language

Python came into dominance in the fields of Artificial Intelligence and Machine Learning of its

user-friendliness, itchfree syntax, and the extensivity of it's libraries and frameworks, which made

it the most preferred programming language for both academic researchers and professional AI

developers (Sharma, 2023). The in-depth study conducted by (Pranav & Sarma, 2023) stated that

as AI and ML continue to advance, it would leverage Python’s features to achieve its expansion;

it would shape the emerging trends and play a crucial role in defining the future trajectory of these

domains. Figure 16 provides a historical perspective on the evolution of ML and AI, outlining its

progression through three generations: “The Backend”, “The Human Side”, and “Pattern

Recognition” while also offering insights into anticipated future developments.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 291

Fig. 16: Brief History of Machine Learning and A.I (Pranav & Sarma, 2023)

Figures 17. and 18. show a brief timeline of the most important events in the history of machine

learning and artificial intelligence respectively.

Fig. 17: Key Events in the History of Machine Learning (Pranav & Sarma, 2023)

Fig. 18: Timeline of Artificial Intelligence Timeline (Bhargavi, 2022)

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 292

4.1.1 Growth in Deep Learning Applications: One of the most notable developments in AI/ML

is the ongoing growth of deep learning. Python, with its libraries such as TensorFlow, PyTorch,

and Keras, has become closely associated with deep learning development. As noted by (Sharma

et al. 2024), these libraries offer tools for developing and training neural networks and support

advanced architectures like transformers, GANs (Generative Adversarial Networks), and

reinforcement learning models. Their seamless integration with Python has increased both research

and application in fields like natural language processing (NLP), computer vision, and autonomous

systems. Figure 19. highlights some Python-based deep learning applications.

Fig. 19: Python Deep Learning Applications (Vidvan, 2020)

4.1.2 Evolution of Automated Machine Learning (AutoML) and Model Optimization:

AutoML is an emerging trend aimed at automating the end-to-end process of applying ML to real-

world problems (Salehin et al., 2024). Python is central to this trend, with tools like AutoSKlearn

and TPOT offering frameworks that simplify model selection, hyperparameter tuning, and feature

engineering. As AutoML evolves with Auto-Keras, Python's role is expanding to include more

sophisticated model optimization techniques, such as neural architecture search (NAS), which

automatically discovers optimal neural network architectures (Jin et. al., 2019).

4.1.3 Integration with Big Data and Cloud Computing: The convergence of AI/ML with big

data and cloud computing is another emerging trend where Python is at the forefront. Python's

integration with big data frameworks like Apache Spark (via PySpark) and its compatibility with

cloud services such as AWS, Google Cloud, and Azure, allow for scalable AI/ML solutions

(Rahman & Rana, 2021). This integration is crucial for handling the massive datasets that modern

AI/ML models require. Moreover, the rise of cloud-based AI services, many of which provide

Python APIs, is making it easier to deploy and manage AI/ML models at scale.

4.1.4 Democratization of AI and ML: Python is playing a pivotal rolein making artificial

intelligence (AI) and machine learning (ML) more accessible to a wider audience. With user-

friendly libraries such as Scikit-learn and the growing availability of educational resources and

online platforms, the entry barriers for understanding and applying ML have significantly

decreased. This accessibility is encouraging innovation across various domains such as healthcare

(for personalized treatment), education (for adaptive learning platforms), and marketing (for

targeted customer segmentation) by enabling individuals without deep technical backgrounds to

develop AI-powered solutions. Recent studies by Turley (2024) highlights the expanding role of

low-code and no-code platforms, many of which are often powered by NJ Python in the backend.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 293

4.1.5 Advancements in Explainability and Interpretability: The high complexity of AI and

machine learning models makes the demand for explainability and interpretability more important

for the wider adoption of AI applications in regulated sectors such as healthcare and finance.

Python is leading advancements in this explainability with libraries like SHapley Additive

exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) (Linardatos et

al., 2020). These libraries enable researchers and professionals to comprehend model predictions

better and also, enhance the transparency and trustworthiness of AI systems.

4.1.6 Reinforcement Learning and Autonomous Systems: Reinforcement learning (RL) is a

type of machine learning process that focuses on decision-making by autonomous agents. An

autonomous agent is an independent system that can perceive its surroundings, make decisions

based on that perception, and take action to achieve its goals without constant human intervention

(Murel & Kavlakoglu, 2024). RL is a significant focus in machine learning research and is

increasingly applied in fields such as robotics, autonomous systems, and gaming. Python is the

primary language for conducting RL experiments and implementations, largely due to its

compatibility with RL libraries such as OpenAI Gym, Stable Baselines, and RLlib, which are

driving progress in the field (Sutton et al., 2018). Figure 38. features CARLA, an open-source

driving simulator with a Python API used in autonomous driving research.

Fig. 20: Python API CARLA (Pérez-Gil et al., 2022)

4.1.7 AI Ethics and Responsible AI Development: The ethical considerations surrounding

AI/ML technologies are receiving more attention, and Python plays a key role in advancing

responsible AI frameworks. Libraries such as Fairlearn and AI Fairness 360 (AIF360) offer

resources to evaluate and reduce bias in AI models (Bellamy et al., 2019). Tools like AIF360,

FairLearn, and SHAP (SHapley Additive exPlanations) are becoming more commonly

incorporated into AI/ML workflows, highlighting the growing movement toward ethical AI

practices. These tools are increasingly embedded within enterprise and cloud-based platforms such

as IBM Watson OpenScale and Microsoft Azure Machine Learning (which integrates FairLearn

and SHAP for model fairness and explainability).

4.2 The Imperative Benefits of Using Python for AI and ML.

The imperative benefits of Python programming language in Artificial Intelligence and Machine

Learning are numerous and are discussed below:

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 294

4.2.1 Stability, Flexibility, and Simplicity: Python has proven to be the ideal language for AI and

ML applications due to its stability, flexibility, and simplicity because it allows developers to write

reliable, readable code and prototype quickly (Worsley, 2024). The focus of Python programming

language on problem-solving and its open-source license, which makes its use free and

distributivity, made it an important tool in AI and ML (Mihajlovic et. al., 2020).

4.2.2 Community Dependability: Python has a very dynamic community that provides strong

support that is useful in the development of AI and ML. Its open-source language feature makes

numerous resources available to AI and ML developers across all levels of proficiencies. Diverse

Python problem-solving forums that are available to help AI and ML developers have consistently

proven to be valuable in rendering help and providing solutions to any type of Python problem

(Ryabtsev, 2024).

4.2.3 Extendable Libraries: Python has a very vast ecosystem of libraries such as Scikit-learn,

TensorFlow, Keras, Numpy, Pytorch, and Cython which are powerful tools for building and

deploying machine learning models, making Python indispensable for cutting-edge technology

development. Scikit-Learn is useful in processing data, and writing classical programs and also

serves as a vital tool in feature engineering, TensorFlow is a crucial tool used in large AI

applications, model deployment, and deep learning, and Keras helps achieve rapid prototyping in

a high-level neural network, NumPy is best applied in matrix operation and numerical

computations into PyTorch is a vital tool in the development and achievement flexible AI/ML

models, and Cython is used for the optimization of python to ensure improved performance (Singh,

2025).

4.2.4 Increased Multifunctionality: Python provides the choice of using object-oriented

programming or scripting which enables AI/ML developers to modify processes without the need

to compile the source code again. It provides a flexible work environment for AI Engineers and

enables them to use their preferred programming style, which results in quick problem resolution.

Python helps to eliminate extreme coding burdens from AI and ML developers through its

multifunctionality (Dergano, 2023).

4.2.5 Popularity and Dominance: the trajectory of Python in AI and ML has shown that Python

programming language has become widely recognized and adopted worldwide, which makes

available more population of AI/ML developers and gives room for the ease of recruiting new

team members and for the expansion of AI and ML inventions through the availability of sufficient

workforce (Ryabtsev, 2024).

4.2.6 Strong Visualization and Data Analysis Tools: Python offers different data visualization

and analysis libraries, which help researchers interpret complex datasets efficiently. Tools like

Matplotlib, Seaborn, and Pyecharts simplify the development of visualizations, improving how

data is understood and conveyed to stakeholders (Cao et al., 2021). Additionally, Python supports

essential data analysis tasks such as cleaning, wrangling, and modeling, which aid in exploratory

data analysis (EDA) and discovering meaningful insights (Singh et al., 2022). These characteristics

are an important step in developing powerful and reliable AI/ML models.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 295

4.2.7 Support for Parallel and Distributed Computing: Python also has great ability in the

parallel and distributed computing space which is important for handling large-scale computations.

This capability is crucial in developing deep learning models and large-scale AI/ML applications.

Python has tools such as MPI(mpi4py) - Message Passing Interface - a standardized, portable

message-passing system designed to work on a wide variety of parallel computers, PETSc

(petsc4py) - Portable Extensible Toolkit for Scientific Computation - a collection of algorithms

for the solution of problems in the area of engineering and scientific applications especially

relating to partial differential equations for high-performance parallel computers (Dalcin et al.,

2011).

4.2.8 Integrability with other languages: Oftentimes, while building AI/ML solutions, we

sometimes need to leverage the speed of low-level languages while maintaining simplicity and this

is why Python is a great language for this task. Python was designed to allow easy integration and

portability with other languages such as C, C++, Fortran, etc. This functionality allows developers

to optimize components that are performance-critical in their applications. We have libraries

dedicated to this, an example of such is Cython which compiles Python code to C for improved

execution speed and interfaces that allow embedding Python within C/C++ programs (Behnel et

al., 2011). This is a flexibility that combines Python’s ease of usage with the efficiency of lower-

level languages like C/C++.

4.2.9 Impact on the advent of Large Language Models (LLMs): Python has been fundamental

to the development and training of complex neural networks, thanks to powerful frameworks like

TensorFlow and PyTorch. These tools provide great support for building large Transformer models

like BERT (Bidirectional Encoder Representations from Transformers). Many leading LLMs, such

as BERT and GPT, were created using TensorFlow or PyTorch, these are possible due to Python’s

simple syntax, which makes it easier to experiment with model architectures and training processes

(Marija & Dražen, 2022). Furthermore, Python has greatly contributed to making LLMs more

accessible, especially through projects like the Hugging Face Transformers library, which brought

a a lot of Transformer models together under a single, easy-to-use API (Wolf et al., 2020).

4.2.10 Automation: Python is commonly adopted as a tool to automate repetitive tasks due to its

simplicity and clarity, this means that even complex procedures can be written with simplicity and

iterated to solve complex problems with little effort. Python codes can be written into scripts used

to glue together steps in a workflow, for example, fetching data, processing it with an AI model,

and triggering some actions even without human intervention. With this advantage, humans can

focus on higher-level work while repetitive tasks are done automatically and this leads to higher

productivity and effectiveness (Karabulut & Akyuz, 2023).

4.2.11 Ease of Learning and Readability: Python's syntax is structured to be clear and easy to

understand, which makes it more accessible for beginners and promotes seamless collaboration

across diverse teams (Lutz, 2013). Its readability simplifies the learning process and is especially

beneficial in AI and ML projects or research, where well-organized and maintainable code is

crucial for ensuring reproducibility and scalability.

4.2.12 Support for Emerging Technologies: Python has established itself as one of the go-to

language options for emerging fields like quantum computing, edge AI, and federated learning

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 296

because of its versatility and rich ecosystem of libraries. Tools such as Qiskit (Abraham et al.,

2019) and Cirq (Google Quantum AI Team, 2020) support quantum computing research, while

TensorFlow Federated (Ingerman & Ostrowski, 2019) facilitates federated learning experiments.

Its flexibility and seamless integration with advanced frameworks make Python an ideal

programming language choice for researchers exploring cutting-edge applications in AI and ML.

4.2.13 Rapid Prototyping and Experimentation: The dynamic typing and interpreted nature of

Python enable researchers to quickly develop prototypes and test ideas, which plays a crucial role

in the iterative AI and ML development process (Pérez et al., 2011). This feature facilitates rapid

experimentation and hypothesis validation, significantly reducing the time required to gain insights

into research projects. Additionally, tools like Jupyter Notebooks enhance this workflow by

offering an interactive platform for iterative development and real-time feedback (Kluyver et al.,

2016).

4.2.14 Ethical AI Development and Collaboration: Python’s open-source ecosystem and

community-driven approach enhance transparency and collaboration, which are essential for

tackling ethical challenges in artificial intelligence and machine learning, including bias, fairness,

and accountability (Weerts et al., 2023). Frameworks such as Fairlearn (Bird et al., 2020) and AI

Fairness 360 (Bellamy et al., 2018), built on Python, empower researchers to detect and mitigate

biases in AI models. This supports the increasing focus on responsible AI research and the

establishment of ethical guidelines in the field.

4.2.15 Accessibility for Non-Programmers: Python's clear and intuitive syntax makes it a

preferred option for researchers and professionals with limited programming experience. Its user-

friendly structure and comprehensive documentation simplify the learning process, allowing

individuals from various fields to engage in AI and ML research (Lutz, 2013). This accessibility

promotes interdisciplinary collaboration and expands opportunities for innovation in the field.

5.0 CONCLUSION

The fields of AI and ML have reached impressive levels of dominance and preference across

various industries, primarily due to their reliance on the advanced features of the Python

programming language. Key aspects such as context managers, metaclasses, abstract base classes,

multiple inheritance, method resolution order (MRO), coroutines, asynchronous programming,

dynamic code execution (using exec and eval), as well as concurrency through threading and

multiprocessing, and the use of generators with decorators have all contributed to this success.

Over time, AI and ML have experienced a dynamic trajectory, marked by growth in deep learning

applications, optimization of automated machine learning and its models, integration with big data

and cloud computing, and the democratization of technology, with absolute kudos to Python.

In conclusion, the invaluable features and advantages of the Python programming language—

including stability, flexibility, simplicity, community support, an extensive library ecosystem,

enhanced multifunctionality and interoperability, widespread popularity, robust visualization, and

data analysis tools, support for parallel and distributed computing, capability for integration with

other languages, and its significant impact on the emergence of large language models (LLMs)—

make it an essential programming language in the realm of AI and ML. Additionally, its support

for automation, ease of learning and readability, advocacy for ethical AI development and

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 297

collaboration, and accessibility for non-programmers further solidify its critical role in this

domain.

6.0 RECOMMENDATIONS

Python's dynamic prototyping which can lead to runtime errors that might not exist in more

statically typed languages, and potentially undermine security and software reliability in AI

applications should be addressed. Python's simplicity which might limit the depth of optimization

and performance tuning compared to languages traditionally that could be used in AI and ML

should be addressed.

Future research should assess the challenges of Python in AI and ML, such as performance

limitations for computationally intensive tasks and dependency management in large projects.

Improved support should be provided for parallel computing and enhanced integration with

emerging technologies like quantum computing, which will further strengthen its role in AI and

ML.

Future studies should focus on developing advanced tools for automated testing, building secure

machine learning pipelines, and supporting privacy-focused methods like federated learning with

tools such as PySyft.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 298

7.0 REFERENCE

Abraham, H., et al. (2019). Qiskit: An Open-source Framework for Quantum Computing. Qiskit

Documentation.

Adetiba, E., John T.M., Akinrinmade, A.A., Moninuola, F.S. , Akintade O.O., and Badejo J.A.

(2021). Evolution of artificial intelligence languages – a systematic literature review.

Journal of Computer Science. 17(11), 1157-1171.

http://dx.doi.org/10.3844/jcssp.2021.1157.1171

Alex Ryabtsev. (2024). 8 Reasons Why Python is Good for AI and ML. Retrieved March 7, 2025,

from https://djangostars.com/blog/why-python-is-good-for-artificial-intelligence-and-

machine-learning/

Ali, M. (2015). Python data types explained: A beginner’s guide. DataCamp. Retrieved March 24,

2025, from https://www.datacamp.com/blog/python-data-types

Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., & Zhang, Y. (2019).

AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM

Journal of Research and Development, 63(4/5),.1-2

https://doi.org/10.1147/jrd.2019.2942287

Bhargavi. (2022, October 25). Artificial intelligence history, stages, types, and domains. Retrieved

from https://sailssoftware.com/artificial-intelligence/

Blackwell, A. (2024). Moral Codes: Designing Alternatives to AI.

https://doi.org/10.7551/mitpress/14872.003.0012

Blackwell, Alan. (2024). Explanation and transparency: Beyond no-code/low-code. In Moral

Codes (pp. 99–116). The MIT Press. Retrieved from

http://dx.doi.org/10.7551/mitpress/14872.003.0010

Borretti, F., & Nathan, P. (2024). Using Emacs as an IDE. Retrieved from

https://github.com/LispCookbook/cl-cookbook/blob/master/emacs-ide.md website:

https://lispcookbook.github.io/cl-cookbook/emacs-ide.html

Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., … Anderljung, M.

(2020, April 15). Toward trustworthy AI development: Mechanisms for supporting

verifiable claims. Retrieved April 23, 2025, from arXiv.org website:

https://arxiv.org/abs/2004.07213

Cao, S., Zeng, Y., Yang, S., & Cao, S. (2021). Research on Python data visualization technology.

Journal of Physics: Conference Series, 1757(1), 012122. https://doi.org/10.1088/1742-

6596/1757/1/012122

Chatterjee, S. (2024, February 28). Master float in Python: The ultimate guidebook to precision.

Emeritus. Retrieved March 24, 2025, from https://emeritus.org/in/learn/float-in-python/

Chen, Y., & Huang, L. (2025). Conditional statements. Retrieved from Springer, pp 133–152

website: https://link.springer.com/chapter/10.1007/978-981-97-8788-3_4

Dalcin, L. D., Paz, R. R., Kler, P. A., & Cosimo, A. (2011). Parallel distributed computing using

Python. Advances in Water Resources, 34(9), 1124–1139.

http://dx.doi.org/10.1016/j.advwatres.2011.04.013

Dergano F. (2023). Python's Role in Artificial Intelligence and Machine Learning. Retrieved

February 27, 2025, from https://raccomandino.medium.com/pythons-role-in-artificial-

intelligence-and-machine-learning-b6b97843a307

Gaddis, T. (2024). Step-by-step solution. Vaia. Retrieved from https://www.vaia.com/en-

us/textbooks/computer-science/starting-out-with-c-from-control-structures-through-

http://www.iiardjournals.org/
http://dx.doi.org/10.3844/jcssp.2021.1157.1171
https://djangostars.com/blog/why-python-is-good-for-artificial-intelligence-and-machine-learning/
https://djangostars.com/blog/why-python-is-good-for-artificial-intelligence-and-machine-learning/
https://www.datacamp.com/blog/python-data-types
https://sailssoftware.com/artificial-intelligence/
https://doi.org/10.7551/mitpress/14872.003.0012
http://dx.doi.org/10.7551/mitpress/14872.003.0010
https://lispcookbook.github.io/cl-cookbook/emacs-ide.html
https://arxiv.org/abs/2004.07213
https://doi.org/10.1088/1742-6596/1757/1/012122
https://doi.org/10.1088/1742-6596/1757/1/012122
https://emeritus.org/in/learn/float-in-python/
https://link.springer.com/chapter/10.1007/978-981-97-8788-3_4
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
https://raccomandino.medium.com/pythons-role-in-artificial-intelligence-and-machine-learning-b6b97843a307
https://raccomandino.medium.com/pythons-role-in-artificial-intelligence-and-machine-learning-b6b97843a307
https://www.vaia.com/en-us/textbooks/computer-science/starting-out-with-c-from-control-structures-through-objects-8-edition/chapter-5/problem-19-the-statement-or-block-that-is-repeated-is-known-
https://www.vaia.com/en-us/textbooks/computer-science/starting-out-with-c-from-control-structures-through-objects-8-edition/chapter-5/problem-19-the-statement-or-block-that-is-repeated-is-known-

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 299

objects-8-edition/chapter-5/problem-19-the-statement-or-block-that-is-repeated-is-

known- (pp.)

Gangopadhyay, S. (2025). The asynchronous IO revolution: How Python is changing the game.

GUVI. https://www.guvi.in/blog/the-asynchronous-io-revolution-how-python-is-

changing-the-game/ (Retrieved April 12, 2025)

GeeksforGeeks. (2024). Why Python is Called Interpreted Language. GeeksforGeeks.

https://www.geeksforgeeks.org/why-python-is-called-interpreted-

language/Geeksforgeeks (2025). Python Operators. Retrieved from March 25, 2025, from

https://www.geeksforgeeks.org/python-operators

Ghimire, D. (2020). Comparative study on Python web frameworks: Flask and Django.

https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf?sequence=

2

Google Quantum AI Team. (2020). Cirq: A Python Framework for Creating, Editing, and Invoking

Noisy Intermediate Scale Quantum (NISQ) Circuits. Cirq Documentation.

Gupta, A. (2023). Machine Learning with Python; Retrieved from

https://medium.com/@aaditgupta06/machine-learning-with-python-aedc5353a72a

Gupta, A. (2020, September 30). 20 most popular Python IDEs in 2024: Code like a pro.

Simplilearn. Retrieved from https://www.simplilearn.com/tutorials/python-

tutorial/python-ide

Gupta, N. (2023, March 27). Meta-programming in Python: Unleashing the power of decorators,

metaclasses, and introspection. DataScience with Python — NishKoder. Retrieved from

https://medium.com/nishkoder/meta-programming-in-python-unleashing-the-power-of-

decorators-metaclasses-and-introspection-e1274c753dc1

Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present,

and Future of Artificial Intelligence. California Management Review, 61(4), 5–14.

https://doi.org/10.1177/0008125619864925

Ihaka, R., & Lang, D. T. (2008, January 1). Back to the Future: Lisp as a base for a statistical

computing system. (pp. 5-6)

https://www.researchgate.net/publication/227019917_Back_to_the_Future_Lisp_as_a_B

ase_for_a_Statistical_Computing_System

Ingerman, A., & Ostrowski, K. (2019). TensorFlow Federated: Machine Learning on

Decentralized Data. TensorFlow Blog.

Jain, A. (2024). Embracing abstraction: A dive into abstract classes in Python. Medium.

https://medium.com/@abhishekjainindore24/embracing-abstraction-a-dive-into-abstract-

classes-in-python-0faf6d83948d (Retrieved April 12, 2025)

Jenifar. (2023). Python exec vs eval. Medium. https://medium.com/@brusooo27/python-exec-vs-

eval-ea949931ee8f (Retrieved April 12, 2025)

Jin, H., Song, Q., & Hu, X. (2019). Auto-Keras: An efficient neural architecture search system.

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. New York, NY, USA: ACM. Retrieved from

http://dx.doi.org/10.1145/3292500.3330648 (pp. 1947)

Karabulut, N., & Akyüz, Y. (2023). A Comparison of RPA Tool and Python Programming

Language for a BOM Digitization Project in Automobile Industry. Yönetim Bilişim

Sistemleri Dergisi, 9(2), 15-26. http://dergipark.gov.tr/ybs

http://www.iiardjournals.org/
https://www.vaia.com/en-us/textbooks/computer-science/starting-out-with-c-from-control-structures-through-objects-8-edition/chapter-5/problem-19-the-statement-or-block-that-is-repeated-is-known-
https://www.vaia.com/en-us/textbooks/computer-science/starting-out-with-c-from-control-structures-through-objects-8-edition/chapter-5/problem-19-the-statement-or-block-that-is-repeated-is-known-
https://www.guvi.in/blog/the-asynchronous-io-revolution-how-python-is-changing-the-game/
https://www.guvi.in/blog/the-asynchronous-io-revolution-how-python-is-changing-the-game/
https://www.guvi.in/blog/the-asynchronous-io-revolution-how-python-is-changing-the-game/
https://www.geeksforgeeks.org/why-python-is-called-interpreted-language/
https://www.geeksforgeeks.org/why-python-is-called-interpreted-language/
https://www.geeksforgeeks.org/python-operators
https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf?sequence=2
https://medium.com/@aaditgupta06/machine-learning-with-python-aedc5353a72a
https://www.simplilearn.com/tutorials/python-tutorial/python-ide
https://www.simplilearn.com/tutorials/python-tutorial/python-ide
https://medium.com/nishkoder/meta-programming-in-python-unleashing-the-power-of-decorators-metaclasses-and-introspection-e1274c753dc1
https://medium.com/nishkoder/meta-programming-in-python-unleashing-the-power-of-decorators-metaclasses-and-introspection-e1274c753dc1
https://doi.org/10.1177/0008125619864925
https://www.researchgate.net/publication/227019917_Back_to_the_Future_Lisp_as_a_Base_for_a_Statistical_Computing_System
https://www.researchgate.net/publication/227019917_Back_to_the_Future_Lisp_as_a_Base_for_a_Statistical_Computing_System
https://medium.com/@brusooo27/python-exec-vs-eval-ea949931ee8f
https://medium.com/@brusooo27/python-exec-vs-eval-ea949931ee8f
https://medium.com/@brusooo27/python-exec-vs-eval-ea949931ee8f
http://dergipark.gov.tr/ybs
http://dergipark.gov.tr/ybs

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 300

Khaled, M. (2023, December 7). Python programming language: A comprehensive overview.

Retrieved from ProfileTree Web Design and Digital Marketing website:

https://profiletree.com/python-programming-language-comprehensive-overview/

Khare, Y. (2024). Use cases of Python context manager. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2024/06/python-context-manager/ (Retrieved

April 12, 2025)

Kuchling, A. M. & Zadka, M. (October 2000). "What's New in Python 2.0". Python Software

Foundation. Retrieved November 20, 2024, from

https://docs.python.org/3/whatsnew/2.0.html

Kuhlman, D. (September 2011). A Python Book: Beginning Python, Advanced Python, and

Python Exercises. Section 1.1. Retrieved November 20, 2024, from

https://www.academia.edu/resource/work/34001890

Kluyver Thomas, Ragan-Kelley Benjamin, Perez Fernando, Granger Brian, Bussonnier Matthias,

Frederic Jonathan, … Jupyter Development Team. (2016). Jupyter Notebooks-; a

publishing format for reproducible computational workflows. In Positioning and Power in

Academic Publishing: Players, Agents, and Agendas (pp.87-90). IOS Press.

https://doi.org/10.3233/978-1-61499-649-1-87

Kumar, R. (2024). Power of LISP for language-oriented programming. Retrieved from

https://industrywired.com/power-of-lisp-for-language-oriented-programming/

Kumar, N. (2018). Python modules tutorial: Importing, writing, and using them. DataCamp.

Retrieved from https://www.datacamp.com/tutorial/modules-in-python

Lily Hulatt & Grabriel Frietas, (2024). Programming Paradigms. Retrived from

https://www.studysmarter.co.uk/explanations/computer-science/computer-

programming/programming-paradigms/

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A review of

machine learning interpretability methods. Entropy, 23(1), 18.

https://doi.org/10.3390/e23010018

List Processor for Businesses - What It is and How to Use It. (n.d.). Retrieved from Lenovo UK

website: https://www.lenovo.com/gb/en/glossary/lisp/

Luna, J. C. (2019). Pip Python tutorial for package management. DataCamp. Retrieved from

https://www.datacamp.com/tutorial/pip-python-package-manager

Lutz, M. (2013). Learning Python: Powerful object-oriented programming. “O’Reilly Media,

Inc.” (pp. 3-4)

McJones, P. R. (2017, October 1). The LISP 2 Project. Retrieved from IEEE (Institute of Electrical

and Electronics Engineers) (pp. 86 - 87) website:

https://ieeexplore.ieee.org/document/8267589/

McKinney, W. (2017). Python for Data Analysis (2nd ed.). O'Reilly Media. ISBN:

9781491957660 https://www.oreilly.com/library/view/python-for-data/9781491957653/

McRorey, L. (2025) Python: The Ultimate Programming Language for Modern Applications

https://teamstation.dev/nearshore-it-staffing-articles/insights?post=python-powerful-

programming-language

Murel , J. & Kavlakoglu, E. (2024, March 25). Reinforcement learning. Retrieved from IBM

website: https://www.ibm.com/topics/reinforcement-learn

Neumann, G. (2002) Programming Languages in Artificial Intelligence. In H. Bidgoli (ed.),

Encyclopedia of Information Systems, (pp. 31-45). Academic Press, San Diego, CA.

http://www.iiardjournals.org/
https://profiletree.com/python-programming-language-comprehensive-overview/
https://www.analyticsvidhya.com/blog/2024/06/python-context-manager/
https://www.analyticsvidhya.com/blog/2024/06/python-context-manager/
https://www.analyticsvidhya.com/blog/2024/06/python-context-manager/
https://docs.python.org/3/whatsnew/2.0.html
https://www.academia.edu/resource/work/34001890
https://doi.org/10.3233/978-1-61499-649-1-87
https://industrywired.com/power-of-lisp-for-language-oriented-programming/
https://www.datacamp.com/tutorial/modules-in-python
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/programming-paradigms/
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/programming-paradigms/
https://doi.org/10.3390/e23010018
https://www.lenovo.com/gb/en/glossary/lisp/
https://www.datacamp.com/tutorial/pip-python-package-manager
https://ieeexplore.ieee.org/document/8267589/
https://www.oreilly.com/library/view/python-for-data/9781491957653/
https://teamstation.dev/nearshore-it-staffing-articles/insights?post=python-powerful-programming-language
https://teamstation.dev/nearshore-it-staffing-articles/insights?post=python-powerful-programming-language
https://www.ibm.com/topics/reinforcement-learning

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 301

https://www.sciencedirect.com/referencework/9780122272400/encyclopedia-of-

information-systems

NTU Library. (2024). Python for basic data analysis. Nanyang Technological University.

Retrieved March 24, 2025, from https://libguides.ntu.edu.sg/python/datatypes

Ogunsanya O. A. & Taiwo R. Enhancing Concrete Structures: Integrating Machine Learning and

Deep Learning for Optimizing Materials Strength, Fire Resistance, and Impact Protection.

World Journal of Advanced Research and Reviews. https://wjarr.com/content/enhancing-

concrete-structures-integrating-machine-learning-and-deep-learning-optimizing

Oracle. (2022). AI vs Machine Learning. Retrieved from https://www.oracle.com/uk/artificial-

intelligence/what-is-ai/ai-vs-machine-learning

Parlante, N. (2020). Python function guide. Stanford University. Retrieved March 24, 2025, from

https://cs.stanford.edu/people/nick/py/python-function.html

Patnaik, A. (2023). Python dictionary: A powerful tool for data engineering. DZone. Retrieved

March 24, 2025, from https://dzone.com/articles/python-dictionary-a-powerful-tool-for-

data-engineer

PEP 206 – Python Advanced Library. (2000). Python.org. Retrieved November 19, 2024, from

https://peps.python.org/pep-0206/

Perez, F., Granger, B. E.; Hunter, J. D. (2011). Python: An ecosystem for scientific computing.

Computing in Science Engineering, 13(2), 13–21. https://doi.org/10.1109/mcse.2010.119

Pérez-Gil, Ó., Barea, R., López-Guillén, E., Bergasa, L. M., Gómez-Huélamo, C., Gutiérrez, R.,

& Díaz-Díaz, A. (2022). Deep reinforcement learning based control for Autonomous

Vehicles in CARLA. Multimedia Tools and Applications, 81(3), 3553–3576.

https://doi.org/10.1007/s11042-021-11437-3

Pozo Ramos, L. (2025). Python mutable vs immutable types: What's the difference? Real Python.

Retrieved March 24, 2025, from https://realpython.com/python-mutable-vs-immutable-

types/ing

Prabu, M., Sountharrajan, S., Suganya, E., & Bavirisetti, D. P. (2024). Contribution of Python to

Improving Efficiency in Artificial Intelligence and Advancing Automation Capabilities. In

Smart Computing Techniques in Industrial IoT (pp. 201-218). Singapore: Springer Nature

Singapore.http://dx.doi.org/10.1007/978-981-97-7494-4_1

Pranav, K. V. R., & Sarma, K. J. (2023). Origin, development, and uses of machine learning.

International Journal For Multidisciplinary Research, 5(1), 2.

https://doi.org/10.36948/ijfmr.2023.v05i01.1367

Protasiewicz, J. (2024, September 2). Python vs. C # : A comprehensive guide for 2024. Retrieved

from Netguru website: https://www.netguru.com/blog/python-vs-c-sharpPranav K. V. R.

& Sarma K. J. (2023). Origin, Development and Uses of Machine Learning. International

Journal For Multidisciplinary Research, 5(1), 1367.

https://doi.org/10.36948/ijfmr.2023.v05i01.1367

Rao, A. (2024). Python Functions: A Complete Beginners Guide. Edureka. Retrieved March 24,

2025, from https://www.edureka.co/blog/python-functions

Rahman, L. A., & Rana, M. E. (2021). The convergence between big data and the cloud: A review.

2021 International Conference on Data Analytics for Business and Industry. IEEE (pp 593-

595). Retrieved from http://dx.doi.org/10.1109/icdabi53623.2021.9655772

Rohith, M. S. (2023). Python inheritance common practices and pitfalls: Diamond problem,

mixins, and others. Towards AI. https://towardsai.net/p/l/python-inheritance-common-

practices-and-pitfalls-diamond-problem-mixins-and-others (Retrieved April 12, 2025)

http://www.iiardjournals.org/
https://www.sciencedirect.com/referencework/9780122272400/encyclopedia-of-information-systems
https://www.sciencedirect.com/referencework/9780122272400/encyclopedia-of-information-systems
https://libguides.ntu.edu.sg/python/datatypes
https://libguides.ntu.edu.sg/python/datatypes
https://wjarr.com/content/enhancing-concrete-structures-integrating-machine-learning-and-deep-learning-optimizing
https://wjarr.com/content/enhancing-concrete-structures-integrating-machine-learning-and-deep-learning-optimizing
https://www.oracle.com/uk/artificial-intelligence/what-is-ai/ai-vs-machine-learning/
https://www.oracle.com/uk/artificial-intelligence/what-is-ai/ai-vs-machine-learning/
https://cs.stanford.edu/people/nick/py/python-function.html
https://cs.stanford.edu/people/nick/py/python-function.html
https://cs.stanford.edu/people/nick/py/python-function.html
https://dzone.com/articles/python-dictionary-a-powerful-tool-for-data-enginee
https://dzone.com/articles/python-dictionary-a-powerful-tool-for-data-engineer
https://dzone.com/articles/python-dictionary-a-powerful-tool-for-data-engineer
https://peps.python.org/pep-0206/
https://doi.org/10.1109/mcse.2010.119
https://doi.org/10.1007/s11042-021-11437-3
https://realpython.com/python-mutable-vs-immutable-types/
https://realpython.com/python-mutable-vs-immutable-types/
https://www.ibm.com/topics/reinforcement-learning
http://dx.doi.org/10.1007/978-981-97-7494-4_11
https://doi.org/10.36948/ijfmr.2023.v05i01.1367
https://doi.org/10.36948/ijfmr.2023.v05i01.1367
https://www.edureka.co/blog/python-functions
https://www.edureka.co/blog/python-functions
http://dx.doi.org/10.1109/icdabi53623.2021.9655772
https://towardsai.net/p/l/python-inheritance-common-practices-and-pitfalls-diamond-problem-mixins-and-others
https://towardsai.net/p/l/python-inheritance-common-practices-and-pitfalls-diamond-problem-mixins-and-others
https://towardsai.net/p/l/python-inheritance-common-practices-and-pitfalls-diamond-problem-mixins-and-others

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 302

Rossum, Guido. Van. (January 2009). "The History of Python: A Brief Timeline of Python". The

History of Python. Retrieved November 19, 2024.

Salehin, I., Islam, Md. S., Saha, P., Noman, S. M., Tuni, A., Hasan, Md. M., & Baten, Md. A.

(2024). AutoML: A systematic review on automated machine learning with neural

architecture search. Journal of Information and Intelligence, 2(1), 52–81.

https://doi.org/10.1016/j.jiixd.2023.10.002

S, Premanand. (2024). Python multithreading: Concurrency and parallel execution in Python.

Analytics Vidhya. https://www.analyticsvidhya.com/blog/2023/08/exploring-

multithreading-concurrency-and-parallel-execution-in-python/ (Retrieved April 12, 2025)

Severance, C. (2016). Tuples are immutable. Python for Everybody. Runestone Academy.

Retrieved March 24, 2025, from https://runestone.academy/ns/books/published/py4e-

int/tuples/tuplesareimmutable.html

Simplilearn. (2025). Functions in Python | Definition, types and examples. Python Tutorial for

Beginners (Lesson 18 of 51). Simplilearn. Retrieved March 24, 2025, from

https://www.simplilearn.com/tutorials/python-tutorial/python-functions

Singh, G., Misra, D., & Narang, P. (2022). Visualization and analysis of populations. 2022

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COM-IT-CON). https://doi.org/10.1109/com-it-con54601.2022.9850886

Singh, V. (2024). Types of functions in Python. Shiksha. Retrieved March 24, 2025, from

https://www.shiksha.com/online-courses/articles/types-of-functions-in-python/

Singh P. (2024). Python Operators: A Comprehensive Guide. Retrieved March 25, 2025, from

https://www.analyticsvidhya.com/blog/2024/01/mastering-python-operators-a-

comprehensive-guide/

Singh S., (2025). Comparative Analysis of Python's Role in AI and Machine Learning.

International Journal of Research in Engineering, Science, and Management Volume 8,

Issue 2. https://journal.ijresm.com/index.php/ijresm/article/view/3219/3278

S. Mihajlovic, A. Kupusinac, D. Ivetic, & I. Berkovic. (2020). Use of Python in the Field of

Artificial Intelligence. Conference Paper.

https://www.researchgate.net/publication/366578422_The_Use_of_Python_in_the_field_

of_Artifical_Intelligence

"Status of Python Versions". (July 2024). Python Developer's Guide. Retrieved November 20,

2024, from https://devguide.python.org/versions/

Stephen M., W. I. (2022). What is Lisp (Programming Language)? — Klu. Retrieved from

https://klu.ai/glossary/lisp-programming-language

StudySmarter. (2024, December 12). Loops in Programming. Retrieved from StudySmarter UK

https://www.studysmarter.co.uk/explanations/computer-science/computer-

programming/loop-in-programming

Sutton, R. S., & Barto, A. G. (2018a). Reinforcement Learning, second edition: An Introduction.

MIT Press (pp. 16-17).

Tas, S. (2024, February 21). Garbage collection and memory management in Python. Retrieved

from Built In website: https://builtin.com/articles/garbage-collection-in-python

Toyosi, M. F., Jaiyeoba, G., Oluwafemi, T. O., & Muhideen, O. O. (2024). The Effect of Smart

Factory on the Continuous Improvement of the Production Process: A Review.

International Journal of Engineering and Modern Technology, 10(1), 83–107.

https://doi.org/10.56201/ijemt.v10.no1.2024.pg83.107

http://www.iiardjournals.org/
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://doi.org/10.1016/j.jiixd.2023.10.002
https://runestone.academy/ns/books/published/py4e-int/tuples/tuplesareimmutable.html
https://runestone.academy/ns/books/published/py4e-int/tuples/tuplesareimmutable.html
https://runestone.academy/ns/books/published/py4e-int/tuples/tuplesareimmutable.html
https://www.simplilearn.com/tutorials/python-tutorial/python-functions
https://doi.org/10.1109/com-it-con54601.2022.9850886
https://www.shiksha.com/online-courses/articles/types-of-functions-in-python/
https://www.shiksha.com/online-courses/articles/types-of-functions-in-python/
https://www.shiksha.com/online-courses/articles/types-of-functions-in-python/
https://www.analyticsvidhya.com/blog/2024/01/mastering-python-operators-a-comprehensive-guide/
https://www.analyticsvidhya.com/blog/2024/01/mastering-python-operators-a-comprehensive-guide/
https://journal.ijresm.com/index.php/ijresm/article/view/3219/3278
https://www.researchgate.net/publication/366578422_The_Use_of_Python_in_the_field_of_Artifical_Intelligence
https://www.researchgate.net/publication/366578422_The_Use_of_Python_in_the_field_of_Artifical_Intelligence
https://devguide.python.org/versions/
https://devguide.python.org/versions/
https://klu.ai/glossary/lisp-programming-language
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/loop-in-programming
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/loop-in-programming
https://builtin.com/articles/garbage-collection-in-python
https://doi.org/10.56201/ijemt.v10.no1.2024.pg83.107

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848

P-ISSN 2695-2149 Vol 11. No. 4 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 303

Turley, D. (2024, May 29). The low-code/no-code revolution: Democratizing development and

reshaping software engineering. The AI Journal. Retrieved from https://aijourn.com/the-

low-code-no-code-revolution-democratizing-developMent-and-reshaping-software-

engineering/

Turner, R. (2012, October 24). Literate Programming in Lisp - Computer Science - University of

Maine. Retrieved September 2, 2024, from Computer Science website:

https://umaine.edu/cs/research/features/literate-programming-in-lisp/

Van Rossum, G. (August 2000). "SETL (was: Lukewarm about range literals)". Python-Dev

(Mailing list). Retrieved November 20, 2024.

Venners, B. (January 2003). "The Making of Python". Artima Developer. Artima. Retrieved

November 20, 2024, from https://www.artima.com/articles/the-making-of-python

Vidvan, T. (2020, May 13). Top 20 Python deep learning applications you must know. Retrieved

September 2, 2024, from TechVidvan website: https://techvidvan.com/tutorials/deep-

learning-applications/

Weerts, H., Dudík, M., Edgar, R., & Madaio, M. (2023, March 29). Fairlearn: Assessing and

improving fairness of AI systems. 2-3

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,

R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu,

C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., & Rush, A. (2020). Transformers:

State-of-the-Art Natural Language Processing. In Q. Liu & D. Schlangen (Eds.),

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations (pp. 38–45). Association for Computational

Linguistics. https://doi.org/10.18653/v1/2020.emnlp-demos.6

Worsley S. (July 2024). What is Python? Everything You Need to Know to Get Started.

DATACAMP. Retrieved August 13, 2024, from https://www.datacamp.com/blog/all-

about-python-the-most-versatile-programming-language

Ziller, A., Trask, A., Lopardo, A., Szymkow, B., Wagner, B., Bluemke, E., … Kaissis, G. (2021).

PySyft: A library for easy federated learning. In Studies in Computational Intelligence (pp.

111–139). Springer International Publishing. Retrieved from https://doi.org/10.1007/978-

3-030-70604-3_5

http://www.iiardjournals.org/
https://aijourn.com/the-low-code-no-code-revolution-democratizing-developMent-and-reshaping-software-engineering/
https://aijourn.com/the-low-code-no-code-revolution-democratizing-developMent-and-reshaping-software-engineering/
https://aijourn.com/the-low-code-no-code-revolution-democratizing-developMent-and-reshaping-software-engineering/
https://umaine.edu/cs/research/features/literate-programming-in-lisp/
https://alalqab.com/en/Guido_van_Rossum
https://mail.python.org/pipermail/python-dev/2000-August/008881.html
http://www.artima.com/intv/pythonP.html
https://www.artima.com/articles/the-making-of-python
https://techvidvan.com/tutorials/deep-learning-applications/
https://techvidvan.com/tutorials/deep-learning-applications/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.datacamp.com/blog/all-about-python-the-most-versatile-programming-language
https://www.datacamp.com/blog/all-about-python-the-most-versatile-programming-language
https://doi.org/10.1007/978-3-030-70604-3_5
https://doi.org/10.1007/978-3-030-70604-3_5

